

Approaches for establishing human no-effect levels for engineered nanomaterials?#

Nanosafe 2010

Session 10: Safety Parameters Evaluation, 18 November 2010

Karin Aschberger, Frans M. Christensen

Nanobiosciences Unit, Institute for Health and Consumer Protection Joint Research Centre, Ispra; http://www.jrc.ec.europa.eu

The opinions expressed in this presentation are those of the authors and not necessarily those of the European Commission.

1

ENRHES

Engineered Nanoparticles: Review of Health and Environmental Safety project

http://nmi.jrc.ec.europa.eu/project/ENRHES.htm

IOM

- to perform a comprehensive and critical scientific review on four types of nanomaterials:
 - Fullerenes Carbon nanotubes Metal Metal oxide

WP 3 – Risk Assessment Analysis (JRC)

- effects and exposure assessment and basic risk assessments to the extent the database allows
- to draw substance specific and general conclusions in relation to knowledge gaps in data and methodology

Nanoafe 2010 - Grenoble 16-18 November 2010

Human No-Effect Level - Methodology

> DNEL (Derived No-Effect Level)/DMEL (Derived Minimal Effect Level) following REACH Guidance on "Information Requirements and Chemicals Safety Assessment"

http://guidance.echa.europa.eu/docs/guidance document/information requirements en.htm?time=1252482386

- → for substances > 10t/y (chemical safety assessment)
- → Risk is controlled: DNEL > exposure

> Comparison with other methodologies:

- > NEDO-project (AIST: Japanese Institute of Advanced Industrial Science and Technology): CNT, TiO₂, Fullerenes http://www.aist-riss.jp/main/?ml_lang=en
- ➤ OEL for MWCNT Baytubes®; Pauluhn 2010; Reg Toxicol Pharmacol
- ➤ NIOSH 2005: REL for ultrafine TiO₂ http://www.cdc.gov/niosh/review/public/Tlo2/pdfs/TlO2Draft.pdf

Nanoafe 2010 - Grenoble 16-18 November 2010

Criteria for establishing Human No-Effect Levels

- >Exposure route
- >Key study (relevance, reliability, NM characterisation)
- > Toxicokinetics
- ➤ Nature and severity of effect
 - > Threshold or non-threshold mechanism
 - ➤ Local systemic effects
- ➤ Dose descriptor
- ➤ Modification to the starting point
- >Assessment factors

JRC Modification and assessment factors

Nanoafe 2010 - Grenoble 16-18 November 2010

Table R. 8-6 Default assessment factors

Modification to the starting point

- Differences in bioavailability
- Route to route extrapolation
- Differences in experimental and human exposure conditions
- Correction for respiratory volume
- -6/8h*67/10 m³ =factor ~2

Assessment factor – accounting for differences in:		Default value systemic effects	Default value local effects
Interspecies	correction for differences in metabolic rate per body weight remaining differences	AS ^{a, b}	1 ^f
Intraspecies	- worker	5	5
	- general population	10 ^c	10°
Exposure	1 1 1 1		a h

Chemical specific assessment factors (CSAF) always to be given preference over default assumptions

	dose-response, incl. LOAEL/NAEL extrapolation and severity of effect	1	1
Quality of whole database	issues related to completeness and consistency of the available data	1 ^d	1 ^d
	 issues related to reliability of the alternative data 	1 ^e	1°

a AS = factor for allometric scaling (see <u>Table R. 8-3</u>);

b Caution should be taken when the starting point is an inhalation or diet study

d See text for deviations from default

f for effects on skin, eye and GI tract via simple destruction of membranes h for effects on respiratory tract.

c Not always covering for very young children; see text for deviations from default

e Special consideration needed on a case-by-case basis

g for effects on skin, eye and GI tract via local metabolism; for effects on respiratory tract

Inhalation toxicity studies

•MWCNT

2 Subchronic Inhalation Studies (OECD 413)

Baytubes®: NOAEC: 0.1 mg/m³ (Pauluhn 2010a)

[Including post-exposure observation period up to 6 months]

Nanocyl: $\underline{L}O(A)EC: 0.1 \text{ mg/m}^3(Ma-Hock et al., 2009)$

•Nano-TiO₂

Subchronic inhalation study (Bermudez et al., 2004)

NOAEC: **0.5 mg/m³** (minimal effects at 2 mg/m³)

(21 nm; anatase/rutile 80/20, [Including post-exposure observation period up to 52 weeks]

Chronic inhalation study (Heinrich et al., 1995)

10 mg/m³: increased mortality and lung tumours in rats

Effects: Inflammation; overload at high doses

no systemic effects → Suggests threshold mechanism → DNEL

Human no effect levels: TiO₂

Nanoafe 2010 - Grenoble 16-18 November 2010

7

Approach	REACH	NEDO	NIOSH (2005)
Exposure duration	Sub-chronic	Sub-chronic	chronic
N(L)OAEC (dose descriptor)	0.5 mg/m ³	2 mg/m ³	(10 mg/m ³)
Correction for exposure time/ activity (6h/8h*6.7/10 m³)	0.25 mg/	Lung deposition: F: 0.85	Extrapolation of tissue doses in rats to human equivalent doses; reduction of working lifetime risk
Interspecies differences (no allometric scaling)	1.5	1	
Intraspecies variation worker	5	1	for lung cancer <
Duration: sub-chronic → chronic	2	2	17 1000
OAF (overall assessment factor)	15 (1.5*5*2)*2	1.7 (2 * 0.85)	REL: 1.5 mg/m ³
Indicative Human No-effect level (INEL)	17 μg/m ³	1.2 mg/m³ 18 µg/kg/day	(Micron size) 0.1 mg/m ³ (ultra fine)

Human no effect levels: MWCNT

Nanoafe 2010 - Grenoble 16-18 November 2010					
Approach	REACH	OEL (Pauluhn 2010)	NEDO		
Substance	Baytubes®	Baytubes®	A Company		
Exposure duration	Sub-chronic (90 d + 6 m)		Sub-acute (4w)		
N(L)OAEC	0.1 mg/m ³	0.1 mg/m ³	0.37 mg/m ³		
Modification to starting point (6h/8h*6.7/10 m³)	0.05 mg/m ³	deposited dose: 1 (Ventilation and pulmonary deposition);	Lung deposition: 0.85		
Interspecies differences	2.5	Humans more AM volume but longer clearance half life: 1.7 ~ 2	1		
Intraspecies variation worker	5	1	1		
Duration	2	1	2		
OAF (overall assessment factor)	25 (2.5*5*2)*2	2	1.7		
INEL	2 μg/m³	OEL: 50 μg/m ³	210 µg/m³ 3 µg/kg/day		

Exposure to CNTs at workplace - Inhalation

- 0.7 μg/m³ (ablation facility), 53 μg/m³ (HiPCo process), SWCNT
- 64 and 93 μg/m³ (weighing and mixing with solvent), 1094 μg/m³ (wet saw) (Maynard et al., 2004)
- 430 μg/m³ and 40 μg/m³ (MWCNT, blending before and after exposure control); 194 and 173 fibers/ml (<5 μm) (Han et al. 2008)
- Baytubes: < 1 μg/m³
- Nanocyl 0.25 μg/m³ (R&D offices) and 1.45 μg/m³ (packaging)

Suggested ELs

INEL_{chronic}: 1 (2) µg/m³

OEL Baytubes: 50 μg/m³

DNEL Nanocyl: 2.5 µg/m³

q

Conclusions

Nanoafe 2010 - Grenoble 16-18 November 2010

0

- Application of default assessment factors usually lead to higher assessment factors and lower human no-effect levels
- Other approaches base the interspecies differences basically on different deposition fractions in the lung lung deposition ≈ modification to starting point
- Remaining interspecies differences reduced to <2.5 (1)?
 (animal exposure conditions might over estimate human risk always?)
- Metrics?
- REACH Implementation Projects on Nanomaterials (RIP-oN) aim at developing advise on how the guidance documents (Information Requirements and Chemical Safety Assessment) could be updated
- Current database is very limited no generalisations possible

Nanoafe 2010 - Grenoble 16-18 November 2010

11

Joint Research Centre (JRC)

Robust science for policy making

Thank you for your attention

Web: www.jrc.ec.europa.eu

Contact: karin.aschberger@ec.europa.eu