Environmental Risk Management of diffuse pollution of mining origin

Emese Vaszita, Katalin Gruiz, Zoltán Siki, Viktória Feigl

Budapest University of Technology and Economics, Budapest, Hungary

DIFFUSE POLLUTION

Definition: non-point source pollution arising from various dispersed, often individually minor point sources.

Characteristics of diffuse sources of pollution

- individually minor, but collectively significant
- cannot be managed as point sources
- difficult or impossible to monitor at the point of origin
- high surface/volume ratio
- the extent and significance relates to:

Climatic and geographical conditions

• Risk Reduction by in situ treatment

Approach:

• catchment or regional scale, GIS (Geographical Information System) based

DIFFUSE POLLUTION FROM MINING

Typical diffuse pollution from mining acid mine drainage, acid rock drainage from mine waste dumps, wind and runoff water transported solid waste polluted sediment polluted soil etc.

OBJECTIVE

To develop

a GIS (Geographical Information System) based Environmental Risk Management (ERM) methodology in support of risk based remediation of diffuse pollution sources originating from mining

LOCATION OF THE STUDIED SITE

SITE DESCRIPTION (1)

STATUS:

Mining ceased in 1985, mine closure and remediation started in 2005

POLLUTION SOURCES:

POLLUTANTS:

HOST ROCK:

TYPICAL PROCESSES: Pyrite (FeS₂) containing point and diffuse (mine waste dumps)

As, Cd, Cu, Pb, Zn, from exploited base metal sulphide ore veins of hydrothermal origin

Pyroxene andesites of Miocene age

Erosion, weathering, acidification, mobilisation of metals, leaching, partition and infiltration

SITE DESCRIPTION (2)

STUDIED AREA: 1

 10 km^2

AVERAGE ANNUALPRECIPITATION:756 1

756 mm/year

RUNOFF FROM ANNUAL RAIN:

375 mm/year

Display: rows=1914 cols=1848 N-S res=2.5 E-W res=2.5

MAIN COMPONENTS OF THE ERM METHODOLOGY

Engineering tools supporting the ERM work: conceptual risk model of the site, GIS modelling, microcosm testing

CONCEPTUAL RISK MODEL

The conceptual risk model includes the point and diffuse sources (primary & secondary), the transport routes and the land-use specific exposure routes and receptors.

GIS MODELLING

Layers integrating local input parameters

Qualitative risk score

Ranking based

on Risk Score

Risk score for all point and diffuse sources: questionnaire
Total risk score = sum of sub-scores relevant
> to the source (max. 33 points)
> to the transport routes (max. 33 points)
> to the receptors (max. 33 points)

Qualitative Risk

Assessment

Scoring: based on quantitative, qualitative categories, topography, geology, hydrogeology, climatic conditions, land use data

Score ranges:	Risk:	Preliminary
		recommendation:
□70–100:	very high risk	removal or complete isolation
5 0–70:	high risk	combined chemical- and
		phytostabilisation
□< 50:	slight risk	revegetation

Qualitative Risk Assessment Results

Pollution source	Risk score	Tons	Recommendation	
Flotation tailings dump	99	4 000 000	complete isolation	
Ore transportation line	92	30 000	to be removed	
Main adit dump, mine waste	84.5	1 100 000	in situ remediation	
Surface water, sediments	81–93	215 000	to be removed	
5 point sources (mine waste dumps)	73–81	45 900	to be removed	
14 different diffuse waste dumps	55–70	10 000	in situ remediation	
15 different diffuse waste dumps	>50	10 000	revegetation	

Quantitative Hazard based on emission

GIS BASED MODELLING OF THE RUNOFF FLUX (ArcView3.1 3D Analyst)

S-based Quantitative

Hazard Assessmen

Spatial scale:

catchment subcatchment 100m² grid

Average annual rainfall: 756 mm/year

Runoff flux downstream (m³/year)

Runoff flux from various diffuse pollution sources

Waste dump	Surface runoff (Σ_1)	Run-through watershed (Σ_2)	Total runoff flux $(\Sigma_{1,2})$	
	m ³ /year	m ³ /year	m ³ /year	
Residual diffuse from removed point sources	22 000	203 000	223 000	
Sum of 14 diffuse sources to be remediated	1 600	52 000	53 600	
Sum of 15 diffuse sources to be revegetated	6 300	58 680	64 980	

Total runoff flux through Northern watershed: 341 580 m³/year

GIS based Quantitative Hazard Assessment

RUNOFF DELIVERED DISSOLVED METAL EMISSION FROM DIFFUSE SOURCES

Total runoff flux:

Total runoff flux through Northern watershed: 341 580 m3/year

Total metal flux:

Total metal flux_{min} (kg/year): As: 64 Cd: 57 Pb: 36 Zn: 10 107 Total metal flux_{max} (kg/year): As: 136 Cd: 224 Pb: 619 Zn: 30 502

small tempora large tempora larger tempora major tempora No Data Kupacok.shp Felsovizgy.shp Watershed.sh

THREE TIERED ITERATIVE RISK ASSESSMENT GIS based Quantitative Hazard Assessment

SOLID FLUX BY EROSION (t/year)

Potential erosion in the Northern catchment of the Toka creek was modelled by GRASS 5.4 GIS. Revised Universal Soil Loss Equation (RUSLE)

A = R K L S C P

(A) annual solid material loss (tonnes/ha/year), (R) rain erosivity, (K) erodibility,(LS) slope factor, (C) cover management factor, (P) soil protection factor

	Annual	24 hours rainfall	1 hours rainfall	Soil erodibility
Rain intensity	average rain	recurrence 2 years	recurrence 2 years	K
	[mm/year]	vear] [cm/24 hours] [cm/ho		[—]
A (average)	756	7.4	0.18	0.12 and 0.23
B (high)	756	10.5	0.53	0.12 and 0.23

The average annual solid loss results were classified =>Erosion map

Erosion of the mine waste dumps compared to the total N. Toka watershed : (A) and (B) cases

Case ,,A" average	Total	Mine	
and "B" heavy	Northern	waste	1
rain	watershed	dumps	
Cell number	169 8763	773	
Area ha	1 062	0.5	
Total erosion A t/year	337	47	
Total erosion B t/year	1053	147	

See poster: K.Gruiz, E.Vaszita, P.Zaletnyik, Z. S of toxic metal transport by erosion

THREE TIERED ITERATIVE RISK ASSESSMENT GIS based Quantitative Hazard Assessment

EROSION RELATED METAL EMISSION OF MINIMUM CONCENTRATION MINE WASTE

A: average rain B: heavy rain	Erosion t/year	Metal emission kg/year				
		As	Cd	Cu	Pb	Zn
A watershed (forest) (1061.5 ha)	296	18	0.3	24	59	59
A mine waste dump (0.5 ha)	47	11	0.2	6	24	24
A total watershed (1062 ha)	337	29	0.5	30	83	83
B watershed (forest) (1061.5 ha)	906	54	0.9	72	181	181
B mine waste dump (0.5 ha)	147	35	0.7	18	74	74
B total watershed (1062 ha)	1053	89	1.6	90	225	225

where:

RQ:Risk Quotient**PEC**:Predicted Environmental Concentration**PNEC**:Predicted No Effect Environmental Concentration

Target of risk reduction: RQ≤1

RISK REDUCTION PLANNING (1) Natural Risk Reduction Capacity of the site

Estimated emitted concentration from the diffuse sources of the Northern catchment

Waste dump

Natural Risk Reduction Capacity of the site (NRRC_{min}) As:150 μg/lCd:100 μg/lPb:100 μg/lZn:25 000 μg/l

 $\begin{array}{c} As: 3.0 \ (66\%) \ Cd: 50 \ (98\%) \\ \hline Pb: 3.4 \ (70\%) \ Zn: 30 \ (97\%) \end{array}$

Toka creek outflow of the N. catchment

<u>minimum</u>

Toka PEC

As:	50 µg/l	Cd:	2	μg/l
Pb:	30 µg/l	Zn:	800	μg/.

RISK REDUCTION PLANNING (2) Water phase related Maximum Permissible Emission from diffuse sources (Backwards mode Risk Assessment)

Waste Dump

Calculated Maximum Permissible Emission (MPE) from the pollution sources to satisfy the EBQC levels in the Toka creek

 As:
 30 μg/l
 Cd:
 50 μg/l

 Pb:
 34 μg/l
 Zn:
 3 000 μg/l

Natural Risk Reduction Capacity of the site (NRRC_{min}) As: 3.0 (66%) Cd: 50 (98%) Pb: 3.4 (70%) Zn: 30 (97%)

Toka creek

EBQC Toka (PNEC)^L

As: 10 μg/lCd: 1 μg/lPb: 10 μg/lZn: 100 μg/l

RISK REDUCTION PLANNING (3) Solid phase related targeted erosion of diffuse sources (forest value)

Target: Erosion of the mine waste dumps to be mitigated to the GIS modelled erosion level of the local forest area

CasesErosion t/yearMetal emission kg/year			s <mark>sion</mark> r					
		As Cd Cu Pb Zn						
Before phytostabilisation	Before phytostabilisation							
A waste dumps (0.5 ha)	47	11	0.2	6	24	24		
B waste dumps (0.5 ha)	147	36	0.7	18	74	74		
After phytostabilisation (forest value)								
A waste dumps (0.5 ha)	0.139	0.033	0.0007	0.017	0.069	0.069		
B waste dumps (0.5 ha)	0.426	0.102	0.002	0.051	0.213	0.213		
Emission mitigation (%): 99.7								

VALIDATION OF THE GIS-BASED RISK REDUCTION PLAN

Maximum Permissible emission from diffuse sources for non-sensitive# and sensitive## water use in the Toka catchment
As: 30 μg/l
Cd: 50 μg/l
Pb: 33 μg/l
Zn: 3 000 μg/l
As: 9 μg/l
Cd: 15 μg/l
Pb: 6.8 μg/l
Zn: 600 μg/l

CONCLUSIVE REMARKS (1)

• Environmental Risk Management of diffuse pollution requires a complex and interdisciplinary approach;

• GIS-based risk assessment and risk reduction planning was demonstrated on an actual diffusely contaminated former mining site in the Toka catchment area;

• Risk Assessment is iterative, pessimistic, tiered and GIS-based;

• Qualitative Risk Assessment results preliminary ranking of the pollution sources (both point and diffuse source) and enables setting of remediation priorities;

• Quantitative Hazard Assessment gives the GIS based emission from diffuse sources and its results refine preliminary ranking of pollution sources;

CONCLUSIVE REMARKS (2)

• The GIS model forecasted remediation target values were validated by the results of the planned and field tested remediation technology;

• The selected risk reduction measure, combined chemical and phytostabilisation is an innovative remediation technology, able to reduce water dissolved and eroded solid related metal emission from diffuse sources (poster: *V. Feigl, A. Anton, F. Fekete, K. Gruiz: Combined chemical and phytostabilisation of metal polluted soils – From microcosms to field experiments);*

THANK YOU FOR YOUR ATTENTION!

emvaszita@mail.bme.hu

gruiz@mail.bme.hu

siki@agt.bme.hu

vfeigl@mail.bme.hu