

Remediation on the former uranium mining and milling site (Hungary): Case Study

> M. Csővari The presented work is a common work of the experts from MECSEK-ÖKO Rt, Pécs, Hungary and MECSEKÉRC Rt, Pécs, Hungary and other companies, institutions

"*DIFPOLMINE" CONFERENCE Budapest* 4-8 July 2005

Geological cross-section of the former mining site (Western Mecsek)

Water treatment processes

1) Mine water treatment

Anion-exchange process is used for U (TDS~1.6 g/l; <u>U~5 mg/l</u>; As<12 mg/l, Ra~0.3 Bq/l)

2) Groundwater treatment

Pump and treat process (TDS~3-15 g/l; U<0.1 mg/l; Ra~0.08 Bq/l) Heavy metals:As<12 mg/l; Pilot-scale PRB (ZVI + sand mixture) (in situ groundwater treatment, experiment)

I Mine water treatment station

Station is situated on the area of former Shaft NI

Yellow cake production

Precipitation of uranium peroxide

some problems

The change of uranium concentration in mine water over long period (1968-2005)

Il Groundwater treatment Tailings Ponds

Total volume of the tailings: 20.4 kt solid + 32 Mm³ of liquid

Sludge from treatment

Sludge 7kt/a (with 50% water content)

Treated water:~0.36 Mm³/a

TDS~6-7 g/l (retention time!!) (NaCl~3 g/l) Mg~17% Ca~17% SO4~26% U~60-70 g/t Ra~24 Bq/kg

Gypsum accretion on the surface of technological equipment

Critical parts and units must be monthly cleaned from gypsum accretion

The installation is located in a narrow valley at the foot of WPIII, linking the mining area with drinking water aquifer

Elemental iron mixed with sand

Permian sandstone with sediments

Two layers of Fe+sand mixture

Precipitation of uranium and dissolution of iron

Uranium is removed with high efficiency but huge volume of inert compounds (CaCO₃, MgCO₃ etc.) is precipitated

Isolines of uranium and calcium concentrations on the test field

2.5

576 (00

575462

Performance change

Water passed through the PRB: ~700 m³/a Formed precipitate: ~0.5 kg/m3~ 350 kg/a Free porosity in PRB (original) ~11 m³ Annual losses:~ 0.35x2.7~0.094 m³ in persentage:~1-1.5%

> Iron dissolution:~20-30 mg/l Fe(II) G=~700x0.03=21 kg/a

Performance monitoring is continued by regular water sampling by planned drillings by hydrogeological evaluation

